Python+H5py实现将SVHN样本库转换为Faster R-CNN训练样本
Python+H5py实现将SVHN样本库转换为Faster R-CNN训练样本
一、上代码
import os
import h5py
svhnPath = 'D:\\Project\\AIProject\\SVHNClassifier\\data'
def loadSvhn(path, subdir):
print('process folder : %s' % subdir)
filenames = []
dir = os.path.join(svhnPath, subdir)
for filename in os.listdir(dir):
filenameParts = os.path.splitext(filename)
if filenameParts[1] != '.png':
continue
filenames.append(filenameParts)
svhnMat = h5py.File(name=os.path.join(dir, 'digitStruct.mat'), mode='r')
datasets = []
filecounts = len(filenames)
for idx, file in enumerate(filenames):
boxes = {}
filenameNum = file[0]
item = svhnMat['digitStruct']['bbox'][int(filenameNum) - 1].item()
for key in ['label', 'left', 'top', 'width', 'height']:
attr = svhnMat[item][key]
values = [svhnMat[attr.value[i].item()].value[0][0]
for i in range(len(attr))] if len(attr) > 1 else [attr.value[0][0]]
boxes[key] = values
datasets.append({'dir': dir, 'file': file, 'boxes': boxes})
if idx % 10 == 0: print('-- loading %d / %d' % (idx, filecounts))
return datasets
if __name__ == '__main__':
for sub_dir in ['extra','train']:
data_sets = loadSvhn(svhnPath, sub_dir)
# data_sets = [{'dir': './', 'file': ('01', '.png'),
# 'boxes': {'label': ['0'], 'left': [12], 'top': [10], 'width': [20], 'height': [30]}}]
print('processing locations to txt file ...')
for ds in data_sets:
txt_file = os.path.join(ds['dir'], ds['file'][0] + '.txt')
boxes = ds['boxes']
labels = boxes['label']
lines = []
with open(txt_file, mode='w', encoding='utf-8') as fs:
for i in range(len(labels)):
label = boxes['label'][i]
left = boxes['left'][i]
top = boxes['top'][i]
width = boxes['width'][i]
height = boxes['height'][i]
lines.append('%s,%s,%s,%s,%s' % (int(label), left, top, width, height))
fs.write('\n'.join(lines))
print('done.')
二、效果
Python+H5py实现将SVHN样本库转换为Faster R-CNN训练样本
https://www.dearcloud.cn/2017/12/19/20200310-cnblogs-old-posts/20171219-Python+H5py实现将SVHN样本库转换为FasterRcnn训练样本/